Role of quorum sensing by Pseudomonas aeruginosa in microbial keratitis and cystic fibrosis.
نویسندگان
چکیده
Pseudomonas aeruginosa is a ubiquitous bacterium that causes opportunistic infections in a range of host tissues and organs. Infections by P. aeruginosa are difficult to treat and hence there is interest in the development of effective therapeutics. One of the key mechanisms that P. aeruginosa uses to control the expression of many virulence factors is the N-acylated homoserine lactone (AHL) regulatory system. Hence, there is considerable interest in targeting this regulatory pathway to develop novel therapeutics for infection control. P. aeruginosa is the principal cause of microbial keratitis and of infections in cystic fibrosis (CF) sufferers, and AHL-dependent cell-to-cell signalling has been shown to be important for both infection types. However, keratitis tends to be an acute infection whereas infection of CF patients develops into a chronic, life-long infection. Thus, it is unclear whether AHL-regulated virulence plays the same role during these infections. This review presents a comparison of the role of AHL signalling in P. aeruginosa-mediated microbial keratitis and chronic lung infections of CF patients.
منابع مشابه
Targeting iron uptake to control Pseudomonas aeruginosa infections in cystic fibrosis. Dr
The aerobic gram negative bacterium Pseudomonas aeruginosa is an opportunistic pathogen responsible for life threatening acute and chronic infections in humans. As part of chronic infection P. aeruginosa forms biofilms, which shield the encased bacteria from host immune clearance and provide an impermeable and protective barrier against currently available antimicrobial agents. P. aeruginosa ha...
متن کاملIn Silico and in Vitro-Guided Identification of Inhibitors of Alkylquinolone-Dependent Quorum Sensing in Pseudomonas aeruginosa.
Pseudomonas aeruginosa is a major opportunistic pathogen in cystic fibrosis, wound and nosocomial infections, posing a serious burden to public health, due to its antibiotic resistance. The P. aeruginosa Pseudomonas Quinolone System (pqs) quorum sensing system, driven by the activation of the transcriptional regulator, PqsR (MvfR) by alkylquinolone (AQ) signal molecules, is a key player in the ...
متن کاملLow concentrations of local honey modulate ETA expression, and quorum sensing related virulence in drug-resistant Pseudomonas aeruginosa recovered from infected burn wounds
Objective(s): Honey’s ability to kill microorganisms and even eradication of chronic infections with drug-resistant pathogens has been documented by numerous studies. The present study is focused on the action of honey in its sub-inhibitory levels to impact on the pathogens coordinated behaviors rather than killing them. Materials and Methods:</strong...
متن کاملEnvironmental regulation of Pseudomonas aeruginosa PAO1 Las and Rhl quorum-sensing systems.
The lasI-lasR and the rhlI-rhlR quorum-sensing systems in Pseudomonas aeruginosa regulate the expression of numerous cellular and secreted virulence factor genes and play important roles in the development of biofilms. The las and rhl systems themselves are known to be directly or indirectly regulated by a number of transcriptional regulators, and consequently, their expression is sensitive to ...
متن کاملRpoN Regulates Virulence Factors of Pseudomonas aeruginosa via Modulating the PqsR Quorum Sensing Regulator
The alternative sigma factor RpoN regulates many cell functions, such as motility, quorum sensing, and virulence in the opportunistic pathogen Pseudomonas aeruginosa (P. aeruginosa). P. aeruginosa often evolves rpoN-negative variants during the chronic infection in cystic fibrosis patients. It is unclear how RpoN interacts with other regulatory mechanisms to control virulence of P. aeruginosa. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbiology
دوره 154 Pt 8 شماره
صفحات -
تاریخ انتشار 2008